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A B S T R A C T

The increasing role of e-commerce has spurred a significant amount of research on optimization in warehousing
management, including routing and scheduling issues. When material handling is rigidly automated, a
deterministic scheduling problem arises, for which solution strategies have been proposed in the literature.
A recent trend is the introduction of autonomous robots, which may interact with human operators and
offer additional flexibility in item manipulation. The resulting problem is affected by uncertainty, due to the
interaction between robots and human workers and the possible failure in items manipulation. In the paper, we
propose an adaptation of approximate dynamic programming strategies with limited lookahead, namely, rollout
strategies and Monte Carlo tree search. The idea can be interpreted as an intermediate approach between the
solution of a deterministic problem, disregarding uncertainty and using a long lookahead, or the application
of pure state-based dispatching rules with no lookahead. The proposed approaches are compared against exact
dynamic programming on small-size instances, and then evaluated on larger instances, proving their viability.
1. Problem description and motivation

The increasing role of e-commerce, additionally boosted during the
Covid period, has made efficient automatic warehouse management a
crucial problem. In such a problem, we have to tackle a combination of
scheduling and routing subproblems, along with some new and peculiar
issues (Boysen et al., 2019a). In some applications, the system is highly
automated, and the problem requires picking items and delivering to a
workstation, where a human worker manually picks items from a set
of trays and places them into boxes. The role of the worker is simply to
assemble the shipment corresponding to a customer order, which may
include multiple items (Boysen et al., 2023a). In such an automated
setting, the resulting scheduling problem is essentially deterministic,
although quite demanding in terms of synchronization issues. With
other system configurations, there is an interaction with AGVs (Löffler
et al., 2022) or robots (Boysen et al., 2023b). The relevance of human–
robot interactions in a practical setting is also shown in Allgor et al.
(2023).

The research described in this paper fits within the EU-funded
research project DARKO,1 a setting in which anthropomorphic robots
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operate autonomously, moving in a workspace where collision with
human workers must be avoided, and not only pick items, but also
deposit them into trays, where shipments are assembled. The relevant
consequence is that the scheduling problem becomes stochastic:

• On the one hand, potential collision with human workers is
detected and anticipated by stopping the robot for a time period.
Hence, the traveling time between two points in the workspace
may be stochastic, as a delay may be introduced.

• On the other hand, the robot may deposit each item in the tray
from a safe location, or from a more distant point. This kind
of action, referred to as throwing, increases throughput, but may
result in a failure. Thus, a second stochastic factor comes into
play, as in the case of a failure in a deposit action implies the
loss of the item, so that a new item of the same type must be
picked.

In this paper, we consider a simplified case featuring a single robot.
The problem will be fully and formally specified in Section 3, but it
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comprises both a scheduling and a routing component. The robot must
ulfill a set of jobs, where each job comprises a set of items that must
e collected from their store locations and deposited into a specific
ray. There is a set of trays, each one corresponding to a parcel to
e assembled, with a given priority. There is a scheduling component,

as we must determine a sequence of pick and place actions, possibly
interleaved among them. There is a routing component, as we must
onsider travel times between points in the space, accounting for the
isk of delays due to collisions, and the risk of a failure if an item is
‘thrown’’ from a convenient but distant point.

When dealing with a stochastic routing/scheduling problem, differ-
ent strategies may be applied:

1. One strategy is to ignore uncertainty and to plan actions opti-
mally, solving a combinatorial optimization problem. This is an
open-loop strategy. When the plan significantly deviates from
reality, due to random disruptions, the control loop is closed and
replanning occurs. In this way, on the one hand, we introduce
a lookahead into the strategy, but this must be often revised,
which may prove to be both inefficient and ineffective.

2. On the opposite side of the spectrum, we may give up any idea
of a lookahead, and just define dynamic priority rules, which
sequence actions on the basis of the current system status. This
is a common approach in machine scheduling, but such a myopic
approach may result in poor performance.

3. A predictive lookahead may be introduced by stochastic dy-
namic programming, which does not disregard the possible oc-
currence of stochastic disruptions. This yields a closed-loop pol-
icy based on system status but, unlike greedy priority rules,
better accounts for the possible state evolution.

While the third approach is highly desirable, it is not quite practi-
cal due to the well-known curse of dimensionality in dynamic pro-
ramming (Powell, 2011). Approximate Dynamic Programming (ADP)

strategies may be applied, but they are still demanding. Moreover,
since our problem is not recurring, as the portfolio of orders is con-
tinuously evolving, we have to learn a policy with some suitable
frequency. The rationale is to find a compromise between adaptability
and performance. The ADP learning algorithm is run at an intermediate
frequency, so that the learned policy may be applied in front of failures,
and it is updated when necessary (typically, when a tray is emptied and
a new customer order must be served).

We will only consider lookahead-based ADP strategies, rather than,
e.g., a pure Value Function Approximation (VFA) strategy. We should
ote that this work builds upon a previous unpublished study con-

ducted by one of the authors as part of her master’s thesis (Battistotti,
2024), and some material has been adapted and revised from that
riginal work. In the thesis, a simpler version of the problem, disre-

garding priorities, was addressed, but an VFA technique (Approximate
Policy Iteration) was also considered. Since VFA was outperformed
by lookahead-based policies, we will not consider it here. For a dis-
cussion of the advantages of introducing a lookahead, including some
theoretical arguments, we refer to Bertsekas (2020).

The plan of the paper is the following. In Section 2 we outline the
relevant literature, in order to position our contribution. The problem
we use as a case study is specified and then formally stated as a Markov
Decision Process (MDP), amenable to solution by stochastic dynamic
programming (DP), in Section 3. Three solution strategies are described
in Section 4: exact DP, which is practical only for small-scale problems,
myopic rollout, and Monte Carlo tree search. Experimental results are
outlined in Section 5, and conclusions are drawn in Section 6.

2. Literature review

In order to provide useful and relevant references, and to position
his paper, we have split the review in two subsections. First, in

Section 2.1, we highlight the key role of proper warehouse management
2 
in e-commerce. Then, in Section 2.2 we summarize key concepts in
approximate dynamic programming, in order to frame the algorithmic
pproaches that we have investigated. Finally, in Section 2.3, we

discuss the positioning of our paper and its potential contributions, as
well as its limitations.

2.1. Warehousing in e-commerce

Optimal warehousing management is a traditional topic in Opera-
tions Research, as illustrated by Boysen and de Koster (2024). Within
an industrial setting, material handling is regarded as an operation
that does not add value to the product. In an e-commerce setting,
where timely delivery is a key service quality factor, warehousing has
become a key factor to profitability. A recent survey with emphasis on
e-commerce is provided by Boysen et al. (2019b).

The exact problem formulation depends on the exact system layout,
and it often involves a combination of order batching and picking,

hich may be formulated as an integer programming problem; see,
e.g., (Valle et al., 2017). Due to the difficulty of the resulting problem,
heuristic approaches are typically applied. Pan et al. (2015) apply
genetic algorithms, whereas (Cheng et al., 2015) propose a hybrid
pproach based on the particle swarm optimization and ant colony

optimization. Optimal policies are discussed by Schiffer et al. (2022),
ncluding dynamic programming.

Warehousing systems may involve different levels of automation
nd interaction between human operators and devices. For instance,

Löffler et al. (2022) discuss the problem of routing pickers in pick-
ing systems assisted by automated guided vehicles (AGVs). A recent
tendency is to move from AGVs to AMRs, i.e., autonomous mobile
obots. In such systems, due attention must be paid to the human–robot
nteraction (Allgor et al., 2023; Löffler et al., 2023). Zhang et al. (2022)

propose a mixed-integer nonlinear model formulation of such problems,
long with heuristic solution strategies.

Most model formulations are deterministic, and emphasis may be
n routing and/or scheduling issues, depending on the nature of the
ystem layout. On the contrary, Boysen et al. (2023b) consider uncer-

tainty in the arrival stream of orders and consider limited look-ahead
strategies. In our paper, we also consider uncertainty and limited
lookahead strategies but, as we discuss later, we consider different risk
factors.

2.2. Strategies for approximate dynamic programming

In principle, stochastic dynamic programming (SDP) is a suitable
ool to tackle complex sequential decisions under uncertainty, like
hose involved in warehouse management under uncertainty. Unfor-
unately, it is well-known that SDP suffers from multiple curses, in-
luding, but not limited to the familiar curse of state dimensional-
ty (Brandimarte, 2021; Powell, 2011). Nevertheless, several approx-

imate dynamic programming (ADP) strategies are available, which
are often able to yield high-quality decision policies under uncer-
ainty. See, e.g., (Powell, 2009, 2010) for a general overview of ADP

strategies, and Powell and Simao (2012) for a review geared towards
transportation and logistics applications.

Such strategies are classified by Powell (2019) into four main
pproaches, which van also be hybridized. The most traditional idea is
alue function approximation (VFA), whereby the value function of the
tandard Bellman optimality equation is approximated in parametric
r non-parametric form. A general survey is provided by Geist and

Pietquin (2013). See, e.g., (Ulmer et al., 2018) for a discussion aimed
at routing problems. Ulmer and Thomas (2020) propose an integration
of parametric and non-parametric approximations. Another strategy,
cost function approximation (CFA), relies on the approximation of a
dynamic decision problem by a static one, where the objective function
is modified in order to foster non-myopic decisions.
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An alternative approach aims at building approximate policies di-
rectly, by policy function approximation (PFA). A policy function di-
rectly maps states into decisions. In complex warehousing and logistics
applications, finding such a map may be far from easy, even though
simple heuristics may be devised and interpreted as approximate policy
functions. In order to improve performance, some form of lookahead
may be introduced, which is the fourth ingredient in ADP and re-
inforcement learning (Bertsekas, 2019). Widely used approaches to
improve a base decision policy by introducing a form of lookahead
include rollout (Bertsekas, 2020; Goodson, 2013) and Monte Carlo tree
search (Browne et al., 2012).

With more specific reference to the application of rollout strategies
to combinatorial optimization and scheduling under uncertainty, we
should also mention early papers such as (Bertsekas & Castanon, 1999;
Bertsekas et al., 1997). The adaptation of ADP strategies to complex
stochastic scheduling problems, such as those encountered in project
scheduling, is illustrated in more recent papers like (Li & Womer, 2015;
Solomon et al., 2019; Xie et al., 2021).

2.3. Paper positioning and contribution

Unlike most literature, we consider a stochastic problem, where
uncertainty is not only related to the incoming order stream, but to
the mission execution by autonomous mobile robots (AMRs). An AMR
must avoid collision with human operators, which implies that they
may have to stop along their way, and that routing should consider
the potential presence of human operators. Moreover, to speed up
operations, an AMR may throw an object into the tray from a certain
distance from the ideal position. Since this may result into a partial
mission failure, the tradeoff between a relatively risky action and a safe
one should be accounted for. Hence, we believe that our paper (which is
related to the UE-funded DARKO project), presents some distinguishing
features with respect to the literature. We should mention that a similar
approach to ours is adopted by Zhou et al. (2024), where stochastic
dynamic programming is applied to provide a control policy for the
immediate future, which is revised at a lower frequency. Dynamic
programming is also applied in a similar context by Justkowiak et al.
(2024), but a deterministic model is considered.

From a methodological viewpoint, we apply well-known lookahead-
based ADP strategies, like myopic rollout and Monte Carlo tree search,
which must be suitable adapted to the problem at hand. As we discuss
in the paper, this also involves some care in shaping the appropri-
ate rewards. Hence, we offer some contribution in terms of reward
engineering literature.

What we describe is a limited case study, which is not meant to be
a fully functional solution. Indeed, we solve a very specific subproblem
(as described in Section 3 below). Moreover, we consider a single
AMR. Hence, our contribution is methodological, as we investigate the
suitability of specific stochastic ADP strategies to a problem with some
new and interesting features.

3. Formal problem statement

We address the problem of scheduling tasks for an intralogistic ap-
plication, where a robot must collect objects and carry them to specific
destinations in a warehouse, while being constrained to a fixed maxi-
mum carrying capacity of 𝑐 objects, regardless of their type. The list of
object types to be moved to the destinations, henceforth also referred
to as assembly spots, and the respective quantities are defined by a set
of orders associated with a priority level, e.g., ‘‘5 units of objectA and
8 units of objectD are demanded, with priority 1’’. The arrival of orders
into the system is stochastic, and every newly arrived order is placed in
a sorted queue based on its associated priority level. The most urgent
order exits the queue whenever an assembly spot is available; hence,
the pairs order-destination characterize a dynamic mission. The robot’s
objective is to schedule a time-efficient and minimum-risk sequence of
3 
Fig. 1. Toy example of the research use case.

tasks to fulfill all orders that arrive before a fixed time horizon, while
respecting their priorities.

The environment, as illustrated by the toy example in Fig. 1, is
indeed a three-dimensional space where a single agent, identified as
the robot, can perform three main action types: it can move from one
location to another, pick objects from boxes, and place into or throw
them towards assembly spots. Note that not all actions guarantee de-
terministic outcomes, because collisions with humans or with shelving
units may occur during navigation, while throws may fail. Indeed,
collisions and failures represent the exogenous risk factors affecting the
system, and the consequences of their occurrence are, respectively, a
time delay and the loss of the object whose throw was attempted.

3.1. The problem setting

The system layout may be represented by a completely connected
graph  = ( , ), where each vertex 𝑛 ∈  represents either a picking
or a throwing location. The set  of edges connecting the vertices
represents the optimal paths to follow in terms of time-efficiency and
risk-avoidance: in fact, the completely connected graph  is the result of
a previously solved routing optimization problem. As depicted in Fig. 2,
each edge 𝑒 = (𝑛0, 𝑛1) ∈  is associated with two parameters: 𝛥𝑡𝖾, which
is the time needed to move from vertex 𝑛0 to the destination vertex
𝑛1, and 𝑟𝖾, which is the probability that the robot will face a potential
collision when traveling through 𝑒. Since the routing optimization
problem defining the edges of the graph is solved once and before
scheduling begins, both parameters 𝑟𝖾 and 𝛥𝑡𝖾 are assumed fixed during
the scheduling problem resolution. This choice leads to a static view
of the risk factors associated with moving actions, which are actually
dynamic in the real world. Nevertheless, as we will later see, the time
horizons for the orders’ fulfillment are generally set to be short in our
experiments, and a unique snapshot of the initial situation is a close
approximation of the risk throughout the entire scheduling. If deemed
necessary, an option would be to repeatedly solve the routing problem
and dynamically adjust the data associated with the edges of graph .

3.2. Problem definition

Let  be the set of 𝑂 object types and  the set of 𝐷 destinations,
from now on also referred to as trays, where objects might need to be
carried to. Each object type is univocally associated with a box where it
is stored and from where it can be picked. In our setting, box locations
are defined by the picking vertices 𝑛 ∈ 𝑝𝑖𝑐 𝑘, while tray locations
are associated with coordinates (𝑥𝑑 , 𝑦𝑑 ), 𝑑 ∈ , that differ from the
throwing vertices 𝑛 ∈ 𝑡ℎ𝑟𝑜𝑤. Nevertheless, each vertex 𝑛 ∈  is also
associated to a pair of coordinates (𝑥𝑛, 𝑦𝑛).

Let then consider time as continuous, such that 𝑡 ∈  = [0, 𝑇 ] with
𝑇 being a fixed a time horizon. As we aim to work with a discrete event
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Fig. 2. Partial representation of graph  = ( , ): each edge 𝖾 ∈  is associated to the parameters pair (𝛥𝑡𝖾 , 𝑟𝖾). Central red zones represent risky areas, i.e., possible obstacles
with which collisions occur with probability 𝑟𝖾.
system, we define a natural set of indexes  = {0, 1, 2,… , 𝐼} such that
time flow is modeled by discrete decision epochs defined by the time
instants 𝑡𝑖 ∈  at which decisions are made. We collect such 𝑡𝑖 in an
ordered set of increasing time instants  ∈  , with 𝑡0 = 0 and 𝑡𝐼 ≤ 𝑇 .

3.2.1. Mission, queue, and service priorities
Let us suppose that at the beginning of the scheduling at least 𝐷

orders are already in the queue waiting to be served, so that the mission
dynamically assigned to the robot is always defined by 𝐷 order-tray
pairs as  = {(𝑘𝑑 , 𝑑), 𝑑 ∈ }, where 𝑘𝑑 = {(𝑜, 𝑞𝑜), 𝑜 ∈ } is the order
associated to tray 𝑑 demanding a quantity of 𝑞𝑜 items for object type
𝑜. For the arrival in the queue of other orders we assume a Poisson
process with rate 𝜆. The queue is indeed a dynamic list of orders sorted
by their associated priority level 𝑙 ∈  = {1, 2}, 1 being the most
urgent. The levels of priority, together with arrival times, define a
rule of precedence for serving the orders in the queue. Indeed, every
time a tray becomes available again an order substitution takes place
according to the selection of the order in the queue with the longest
waiting time among the most urgent ones. Moreover, in order to avoid
longer-waiting, lower-priority orders to be surpassed by newly arrived,
higher-priority orders, after a predefined period of time priorities of all
less urgent orders in the queue rank up by one level.

3.2.2. State space
We are ready to define the state space . Let 𝑠 ∈  be defined as an

array of dimension 𝛺 = 2 +𝑂 × (𝐷 + 1), resulting from a concatenation
of the following:

• 𝑠1 ∈ 𝐼 , which represents the time elapsed from the beginning of
the initial mission in terms of decisional epochs;

• 𝑠2 ∈  , which represents the position of the robot on the graph
at time 𝑠1;

• 𝑠𝑜 ∈ N(𝐷+1)
0 , defined ∀ 𝑜 ∈ , such that:
4 
– 𝑠𝑜,1 ∈ {0,… , �̄�} is the number of objects of type 𝑜 picked
before time 𝑠1, where �̄� =

∑𝐷
𝑑=1 𝑞𝑜𝑑 ∣ 𝑜𝑑 = 𝑜, represents the

total number of objects of type 𝑜 to pick during the mission
defined at that time;

– 𝑠𝑜,𝑑+1 ∈ {0,… , 𝑞𝑜𝑑 } is the number of objects of type 𝑜 placed
in tray 𝑑 ∈  = {1,… , 𝐷} before time 𝑠1, where 𝑞𝑜𝑑
represents the total number of objects of type 𝑜 to place in
tray 𝑑 during the mission defined at that time.

For example, let 𝑂 = 2 and 𝐷 = 2, so that 𝛺 = 2 + 2 × (2 + 1) = 8. A
generic state 𝑠 ∈  would be denoted as 𝑠 = (𝑡𝑖 ∈  , 𝑛 ∈  , 𝑠1, 𝑠2)
and, given a suitable mission , one could have 𝑠1 = (4, 2, 1) and
𝑠2 = (1, 1, 0). Note that each state records information about which
objects have been picked and/or placed up to a specific time, and
enables a deduction of the remaining tasks required to complete the
respective current mission. In fact, whenever an order is fulfilled and
there is at least one other order waiting in the queue, a tray substitution
is performed, hence the record regarding the just emptied tray is reset
and the mission updated.

3.2.3. Action space
Let us now focus on the action space. As previously stated there are

three main action types: move, pick, throw, which can further branch
off into more specific actions by associating to each type additional
information. For example, to a moving action type we shall associate
a vertex where to move, and for a picking action type we shall specify
which object has been chosen to be picked. We work with a set  =
𝑚𝑜𝑣𝑒 ∪ 𝑝𝑖𝑐 𝑘 ∪ 𝑡ℎ𝑟𝑜𝑤, where 𝑚𝑜𝑣𝑒 ⊂  , 𝑝𝑖𝑐 𝑘 ⊂  and 𝑡ℎ𝑟𝑜𝑤 =
{(𝑜, 𝑑), 𝑜 ∈ , 𝑑 ∈ }, and various subsets 𝑠 ⊂  only containing
the admissible actions given a state 𝑠 ∈ . Furthermore, each action is
associated to the time duration of its execution, namely 𝛥𝑡𝗍𝗁 = 5 time
units for all throwing actions, 𝛥𝑡𝗉𝖼𝗄 = 7 for all picking actions, and 𝛥𝑡𝖾,
as previously defined, for moving actions on edge 𝖾 ∈  .
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3.2.4. Risk factors, immediate contributions and state transitions
Action types are also linked to rewards that depend on the state

f the system, on the time at which the action is performed and on
its outcome. We will refer to such rewards as immediate contributions
and denote them as 𝐶𝑡𝑖 (𝑠𝑡𝑖 , 𝑎𝑡𝑖 , 𝑤𝑡𝑖+𝛥𝑡), where 𝑤𝑡𝑖+𝛥𝑡 is the realization of
risk factors during the time interval subsequent to the time instant of
the decision. In fact, being time flow described by time instants 𝑡𝑖 ∈ 
orresponding to decisional epochs, and by uneven intervals 𝛥𝑡 ∈ 𝛥 =
𝛥𝑡𝗉𝖼𝗄, 𝛥𝑡𝗍𝗁, 𝛥𝑡𝖾, 𝖾 ∈ } corresponding to actions’ duration, given a state
f the system 𝑠𝑡𝑖 at time 𝑡𝑖 and a succeeding state 𝑠𝑡𝑖+𝛥𝑡, 𝛥𝑡 ∈ 𝛥, one can

indicate the realization of risk factors in between the two as 𝑤𝑡𝑖+𝛥𝑡, 𝛥𝑡 ∈
𝛥.2

As previously mentioned, our system is affected by two risk factors
directly associated to throwing and moving actions, while picking
ctions are deterministic.

The probability of success of a throwing action from throwing vertex
𝑛 ∈ 𝑡ℎ𝑟𝑜𝑤 to tray 𝑑 is given by:

𝑝throw =

{

0, if ‖(𝑥𝑛, 𝑦𝑛), (𝑥𝑑 , 𝑦𝑑 )‖2 ≥ 𝑀
1

𝑀−𝑚

(

𝑀 − ‖(𝑥𝑛, 𝑦𝑛), (𝑥𝑑 , 𝑦𝑑 )‖2
)

, otherwise,
(1)

where 𝑀 and 𝑚 are threshold distances based on the specific warehouse
imensions and the robot’s throwing capabilities considered in the
pplication. A throw fails if the distance between the throwing vertex
and the tray 𝑑 exceeds 𝑀 , while 𝑚 ≤ min𝑛,𝑑 (‖(𝑥𝑛, 𝑦𝑛), (𝑥𝑑 , 𝑦𝑑 )‖2)

contributes to the normalization factor 𝑀 − 𝑚, so that 𝑝throw ≤ 1 for
all throwing actions. In our experiments, the parameters were based
on our graph modeling and set to 𝑀 = 80, 𝑚 = 8. Hence, 𝑝throw is
inversely proportional to the distance between the throwing location
nd the destination, and completely independent of the object thrown.
he possible outcomes arising from a throwing action are thus binary:

success, denoted by 𝑤𝑡𝑖+𝛥𝑡𝗍𝗁 = 𝑤𝑖+1 = 1, is expected with probability
𝑝throw, while failure, 𝑤𝑡𝑖+𝛥𝑡𝗍𝗁 = 𝑤𝑖+1 = 0, may occur with probability
1 − 𝑝throw.

For what concerns moving actions, parameter 𝑟𝖾, 𝖾 ∈  indicates
 risk percentage, hence the probability of having a failure 𝑤𝑡𝑖+𝛥𝑡𝖾 =
𝑖+1 = 0, i.e., a collision, when traveling through the corresponding
dge is
𝑝move =

𝑟𝖾
100

. (2)

Instead, a smooth crossing of the same edge happens with probability
 − 𝑝move, and is denoted by 𝑤𝑡+𝛥𝑡𝖾 = 𝑤𝑖+1 = 1.

A clarification on the outcomes of risk factors prompts to the defi-
nition of immediate contributions and state transitions, which depend
on them.

For a throwing action 𝑎𝑖 = (𝑜, 𝑑) ∈ 𝑠𝑖 ,𝑡ℎ𝑟𝑜𝑤, i.e., throw object 𝑜 ∈ 
n tray 𝑑 ∈ , the immediate contribution is defined as:

𝐶𝑖(𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1) =
⎧

⎪

⎨

⎪

⎩

0, if 𝑤𝑖+1 = 0
𝑟throw(2𝑇−𝑠1𝑖 )

𝑇 −
𝛼 𝑇 𝑒

𝑑
max𝑑 (𝑇 𝑒

𝑑 )+1
+

𝛽(𝑠1𝑖 −𝑇
𝑒
𝑑 )

min𝑑 (𝑠1𝑖 −𝑇
𝑒
𝑑 )+1

, else,
(3)

where 𝑇 𝑒
𝑑 is the entering time in the mission of the order assigned

o tray 𝑑, 𝑟throw is a multiplicative factor common to all throwing
actions and 𝛼 and 𝛽 are positive coefficients, set both equal to 1 in
our experiments. The negative term suggests a growing penalty for
rders that entered the system earlier, while the one weighted by 𝛽

gives an incentive to throw objects demanded by orders that have been
waiting for a longer time. However, both terms help defining a tray-
filling (or order-completing) priority. For the same throwing action the
state transition is ruled by equation

𝑠𝑖+1 = 𝑔𝑡𝑖+𝛥𝑡𝗍𝗁 (𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1), (4)

2 Hereafter, for the sake of notation’s simplicity, wherever necessary we will
ubstitute indexing by time 𝑡𝑖 with just 𝑖, provided it does not create ambiguity.

As examples: 𝑠 = 𝑠 , 𝑠 = 𝑠 = 𝑠 , and 𝑤 = 𝑤 = 𝑤 .
𝑡𝑖 𝑖 𝑡𝑖+𝛥𝑡 𝑡𝑖+1 𝑖+1 𝑡𝑖+𝛥𝑡 𝑡𝑖+1 𝑖+1

5 
such that

𝑠1𝑖+1 = 𝑠1𝑖 + 𝛥𝑡𝗍𝗁, for 𝑤𝑖+1 = 0, 1, (5)

𝑠𝑜,1𝑖+1 =

{

𝑠𝑜,1𝑖 , for 𝑤𝑖+1 = 1
𝑠𝑜,1𝑖 − 1, for 𝑤𝑖+1 = 0, (6)

𝑠𝑜,𝑑+1𝑖+1 =

{

𝑠𝑜,𝑑+1𝑖 + 1, for 𝑤𝑖+1 = 1
𝑠𝑜,𝑑+1𝑖 , for 𝑤𝑖+1 = 0. (7)

Eq. (5) simply updates the elapsed time from the beginning of the
cheduling, while Eqs. (6) and (7) respectively reflect that when a

throw fails an object is lost and that, instead, a successful throw places
the object in the corresponding tray.3 Note that the dependence on just
the previous state of the system rather than on the whole path is a
common assumption better known as Markovian property, on which

e hinge throughout our entire paper.
For a moving action 𝑎𝑖 = 𝑛 ∈ 𝑠𝑖 ,𝑚𝑜𝑣𝑒, i.e., move from 𝑠2𝑖 to 𝑛 along

𝑒 = (𝑠2𝑖 , 𝑛) ∈  , the immediate contribution is null in case of a smooth
crossing of the edge and equals −2 when collisions occur. Moreover,
the system transitions according to:

𝑠𝑖+1 = 𝑔𝑡𝑖+𝛥𝑡𝖾 (𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1), (8)

where

𝑠1𝑖+1 =

{

𝑠1𝑖 + 𝛥𝑡𝖾, for 𝑤𝑖+1 = 1
𝑠1𝑖+1 = 𝑠1𝑖 + 𝛥𝑡𝖾 + 5, for 𝑤𝑖+1 = 0, (9)

𝑠2𝑖+1 = 𝑛, for 𝑤𝑖+1 = 0, 1. (10)

Eq. (10) indicates the transition from the initial location 𝑠2𝑖 to the
intended destination 𝑛, while Eq. (9) suggests a penalty of 5 time units
in case of a collision. Finally, deterministic picking actions (such that

𝑡+𝛥𝑡pck = 𝑤𝑖+1 = 1 ∀𝑖) of the type 𝑎𝑖 = 𝑜 ∈ 𝑠𝑖 ,𝑝𝑖𝑐 𝑘, i.e., pick object
∈ , define the deterministic immediate contribution

𝐶𝑖(𝑠𝑖, 𝑎𝑖, 1) =
𝑟pick(2𝑇 − 𝑠1𝑖 )

𝑇
(11)

with 𝑟pick being a multiplicative factor common to all picking actions,
and bring the system to a succeeding state

𝑠𝑖+1 = 𝑔𝑡𝑖+𝛥𝑡𝗉𝖼𝗄 (𝑠𝑖, 𝑎𝑖, 1), (12)

accounting for one more picked item of type 𝑜 after 𝛥𝑡𝗉𝖼𝗄 time units. In
fact:

𝑠1𝑖+1 = 𝑠1𝑖 + 𝛥𝑡𝗉𝖼𝗄, (13)

𝑠𝑜,𝑗𝑖+1 =

{

𝑠𝑜,𝑗𝑖 , ∀𝑗 ≠ 1
𝑠𝑜,𝑗𝑖 + 1, for 𝑗 = 1. (14)

Note that the decrease with time of the immediate contributions as-
sociated to both picking (11) and throwing (3) actions is needed to
emphasize the importance of collecting and placing objects at the
arliest convenient opportunity.

3.2.5. Problem objective
Let us finally state the problem objective. After the definition of a

suitable terminal reward value function 𝐹 (⋅) ∶  → R, that measures
he quality of terminal states of the system, the natural way of stating
he stochastic problem so far described should be:

max
𝜋∈𝛤

E

[

∑

𝑖∈
𝛾 𝑖𝐶𝑖(𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1) + 𝛾𝐼𝐹 (𝑠𝑡𝐼 )

]

, (15)

s.t. 𝑎𝑖 ∈ 𝑠𝑖 ∀𝑖 ∈ , (16)

3 We explicit state transition equations only for state entries that actually
ary when an action is performed. Other entries, whose transition is implicit,

remain unchanged.
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𝑠𝑖+1 =

⎧

⎪

⎨

⎪

⎩

(4) if 𝑎𝑖 is a throw action,
(8) if 𝑎𝑖 is a move action,
(12) if 𝑎𝑖 is a pick action,

∀ 𝑖 + 1 ∈ , (17)

where 𝛾 ∈ (0, 1] is a discount factor, and 𝛤 is the set of admissible
policies. A policy is a sequence of functions 𝜋 = (𝜋𝑖)𝑖∈ , such that each
𝜋𝑖 ∶  →  maps a state of the system 𝑠𝑖 ∈  at time 𝑡𝑖 to an admissible
action 𝑎𝑖 ∈ 𝑠𝑖 . The objective becomes the search for an optimal policy.

4. Solution strategies

The paradigm of Dynamic Programming (DP) has been chosen to in-
novatively solve the problem of intralogistic robot scheduling described
n the previous section because of its notorious flexibility. Indeed, its
pplications span across various fields, from operations research to
conomics, from control theory to machine learning. DP is not a fixed

and defined algorithm, but rather an optimization principle, and as
such its implementation for a specific problem may require a consider-
able customization effort (Brandimarte, 2021) that counterbalances its
appealing flexibility. Furthermore, it is as flexible as computationally
expensive: curses of dimensionality are its Achilles’ heel, and it might
prove impractical for larger scale problems. For this reason, in our
research, exact DP is only applied to small problem instances, in order
to employ the output solutions as benchmarks to validate approximate
implementations for larger scale instances.

Such approximate implementations are chosen as two Approximate
Dynamic Programming (ADP) resolution techniques that fall under
the category of Look-Ahead Policies (LAPs): Myopic Rollout (MR)
and Monte Carlo Tree Search (MCTS). Another point in favor of the
implementation of two LAPs is that they do not require exhaustive
replanning when a new order starts being served. In fact, given our
roblem setting, when exploiting the exact DP paradigm we must
epeat the complete enumeration of all the new possible states of the

system whenever an order associated to a tray is substituted. This will
become clearer in the next section, as it will the fact that with LAPs
his extensive enumeration is not necessary. LAPs assist in decision-
aking in a certain state by simulating (a limited number of) plausible

cenarios, thus eliminate the need of exploring the entire state system.

4.1. Exact dynamic programming

The main idea of exact DP is to recursively solve a multi-stage
ynamic decision problem as the one presented by decomposing it into

smaller sub-problems. The key procedure is to evaluate states based
on their appeal through the use of value functions 𝑉𝑖 ∶  → R, that
measure the quality of being in a certain state at time instant 𝑡𝑖. As
for actions, their quality is somehow evaluated through the immediate
contributions 𝐶𝑖(⋅), as in the general formulation (15).

Let us describe how the recursive resolution of the sub-problems is
erformed through a backward pass. In finite-horizon problems as ours,
 value is assigned to all possible terminal states based on their quality
hrough a specific terminal reward value function, chosen as

𝐹 (𝑠) = (𝑇 − 𝑠1) −
∑

𝑑

∑

𝑜∈𝑘𝑑

(

𝑞𝑜 − 𝑠𝑜,𝑑+1
)

+
∑

𝑜
𝑠𝑜,1, (18)

for our problem. The term 𝑇 − 𝑠1 linearly rewards the early completion
of the mission with respect to the fixed time horizon 𝑇 , the double
summation is a penalization of one unit for every object that was
supposed to be placed but has not (there is no penalty if the mission is
completed before time horizon is reached), while the last summation is
a prize of one unit for every picked object. Then, for each previous
state that would bring the system to a terminal one, the assigned
value is the result of an optimization problem over the admissible
actions. The objective of the sub-problem is the expectation of the sum
of the immediate contribution and the discounted future state value,
conditional to the current state and the chosen action. The process is

then repeated until the initial state is reached.

6 
In brief, what just described is the recursive application of the
ellman’s Equation:
⎧

⎪

⎨

⎪

⎩

𝑉𝐼 (𝑠𝐼 ) = 𝐹 (𝑠𝐼 )
𝑉𝑖(𝑠𝑖) = opt

𝑎𝑖∈𝑠𝑖

E
[

𝐶𝑖(𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1) + 𝛾 𝑉𝑖+1(𝑠𝑖+1)|𝑠𝑖, 𝑎𝑖
]

, 𝑖 ∈  ⧵ {𝐼}. (19)

In conclusion, the final optimal solution given by the application of the
Dynamic Programming principle is defined by one last pass, forward in
time. Starting from a given initial state, for each time instant 𝑡𝑖 at which
a decision must be made, the final forward pass selects the optimal
action as the argument satisfying (19). Note that in our problem setting
he state space varies whenever a new order is assigned to a tray,
eading to the necessity of repeating a backward pass as the one

described above. The more orders to serve, the more tray’s substitutions
take place, thus more backward passes are needed. We will discuss
in Section 5 that this frequent and thorough replanning considerably
affects the execution time of the paradigm on our problem.

4.2. Lookahead-based ADP strategies

In this section, we describe how two look-ahead policies (LAPs)
have been adapted to the specific problem we deal with. For the sake of
completeness, we should mention the other common ADP techniques,
based on Value Function Approximation (VFA) or Policy Function
Approximation (PFA). A VFA approach is similar to LAPs in the sense
that both work going forward in time, avoiding the expensive backward
pass of exact DP. However, the former aims at building functions to ap-
proximate the values that would be associated with all the states within
an exact DP paradigm. It does so by first simulating several sample
aths from an initial state, forward in time, up to a long time horizon

or a terminal state, in order to find suitable parameters to approximate
the value functions to be used later during the decision-making process.
One could say that it includes a learning phase, comprising simulations,
separate from and prior to the actual decision-making. On the other
hand, each decision made with LAPs when in a state is directly based
on simulations starting from that state and ending after a limited
number of steps, i.e., the lookahead. A PFA approach (in principle) is
also feasible for our problem, as the action set is finite. Nevertheless,
in this paper, we do not describe VFA and PFA approaches because,
s mentioned in Section 1, we have investigated Approximate Policy

Iteration in a previous study (Battistotti, 2024), in order to learn a
suitable approximation of the optimal value function. Computational
experiments shown that a larger computational effort is required to
obtain a performance that is similar to LAPs. For further considerations
on the advantages provided by lookahead, we refer again to Bertsekas
(2020).

4.2.1. Myopic rollout
The adjective Myopic describes the activity of making a decision just

by looking roughly into the future, without a crystal ball. However,
R represents an improved version of a more naive decision-making

echnique: a Myopic Policy that only relies on the values of immediate
ontributions to select the best action. The improvement is indeed
eflected in the noun Rollout, which stands for the recursive procedure
f rolling to the next state after making the myopic decision and then
epeating the process for a fixed number of steps. During this phase an
stimate of the value of being in the state from where the rollout has
tarted is produced, based on a probable future path. If, given a state
, the MR procedure is performed for all the states reachable from 𝑠,
s shown in Fig. 3, a sub-optimal action can be chosen based on the

expectation of the myopic value produced for the state the action may
lead the system to, according to
ar g max

𝑎∈
P(1)(𝐶𝑖(𝑠, 𝑎, 1) + 𝑉 ′𝑎) + P(0)(𝐶𝑖(𝑠, 𝑎, 0) + 𝑉 ′′𝑎), (20)

where 𝑉 ′𝑎 and 𝑉 ′′𝑎 are the values associated through MR to the states
eventually succeeding 𝑠 when action 𝑎 is performed, in case of success
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Fig. 3. Example of decision-making process through MR for generic state 𝑠. Square nodes represent the states of the system before the random realizations. For every state (round
node) reachable from 𝑠 a value is computed with a MR. The best action is then chosen as in Eq. (20).
and failure respectively, occurring with probability P(1) and P(0).
Given the simplicity of the algorithm its implementation only re-

quires the definition of a few parameters. For example, it is essential
to define how far in the future to ‘‘roll’’ and how to myopically choose
between a set of available actions. For the decision rule we simply opt
for the Myopic Policy that outputs an action solely based on a myopic
version of its deterministic immediate contribution, i.e.,

𝑎⋆𝑖 = ar g max
𝑎∈𝑠𝑖

𝐶𝑀
𝑖 (𝑠𝑖, 𝑎) = ar g max

𝑎∈𝑠𝑖
⋅
𝑟𝑎(2𝑇 − 𝑠1𝑖 )

𝑇
, (21)

where 𝑟𝑎 ∈ {𝑟pick, 𝑟throw, 𝑟move} depends on action 𝑎. This choice directly
affects the estimates of the values of the states produced during the roll-
out. In fact, after every myopic decision, the estimates are recursively
defined as:

𝑉 (𝑠𝑖) = 𝐶𝑖(𝑠𝑖, 𝑎⋆𝑖 , 𝑤𝑖+1) + 𝛾𝑉 (𝑔𝑡𝑖+𝛥𝑡(𝑠𝑖, 𝑎⋆𝑖 , 𝑤𝑖+1)). (22)

As for the number of recursion steps to perform, denoted by 𝑅, its
choice may vary depending on the problem: in general 𝑅 should
increase with the problem size. Specifically, we noticed that an increase
in the value of parameter 𝑅 does not negatively affect the performances
of the algorithm on small scale problems, but, if significant, it may
worsen them for larger scale problems. Supposedly, the further in the
future we myopically look, the less accurate are the values produced
by the MR. Accounting for the attentive considerations, we set 𝑅 = 10
for all problem’s instances.

Of course, once the rollout approaches the time horizon or reaches
a terminal state it cannot proceed, and a precise value must be assigned
to the terminal state reached. To this aim, we employ the same terminal
value function defined in (18) for DP.

Finally, we conclude the subsection by summarizing the overall
decision-making procedure through MR Pseudo-Algorithm 1.

4.2.2. Monte Carlo tree search
MCTS is a search method based on a randomized exploration of

the state space. Its algorithm uses the results of previous explorations
7 
Algorithm 1 Decision making through MR
1: procedure BestDecision(𝑠)
2: BestValue ← 0
3: for 𝑎 ∈ 𝑠 do
4: 𝑠′ = 𝑔𝑡𝑖+𝛥𝑡(𝑠, 𝑎, 1) ⊳ State associated to action’s success
5: 𝑉 ′ =MyopicRollout𝑠′, 0
6: 𝑠′′ = 𝑔𝑡𝑖+𝛥𝑡(𝑠, 𝑎, 0) ⊳ State associated to action’s failure
7: 𝑉 ′′ =MyopicRollout𝑠′′, 0
8: 𝑉 = P(1)(𝐶𝑖(𝑠, 𝑎, 1) + 𝑉 ′) + P(0)(𝐶𝑖(𝑠, 𝑎, 0) + 𝑉 ′′)
9: if 𝑉 > BestValue then

10: BestValue ← 𝑉
11: BestAction ← 𝑎
12: end if
13: end for
14: return BestAction
15: end procedure
16:
17: procedure MyopicRollout(𝑠, 𝑟)
18: 𝑎⋆ = (21)
19: if 𝑟 ≤ 𝑅 then
20: Exogenous factor realization. Simulate outcome 𝑤
21: 𝑠′ = 𝑔𝑡𝑖+𝛥𝑡(𝑠, 𝑎⋆, 𝑤)
22: RealContribution = 𝐶𝑖(𝑠, 𝑎⋆, 𝑤)
23: 𝑟 ← 𝑟 + 1
24: if 𝑠 is not terminal then
25: 𝑉 ′ =MyopicRollout𝑠, 𝑟
26: 𝑉 = RealContribution +𝛾 𝑉 ′

27: else 𝑉 = 𝐹 (𝑠)
28: end if
29: else 𝑉 = 𝐶𝑀

𝑖 (𝑠, 𝑎⋆)
30: end if
31: return 𝑉
32: end procedure
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Fig. 4. The main steps of a MCTS at arbitrary iteration ℎ. Round and square nodes represent pre-decision and post-decision states respectively. All white nodes represent states
visited during previous iterations.
to gradually build up a tree in memory, hence it progressively be-
comes better at accurately estimating the values of the most promising
actions (Winands, 2015).

As the name implies, the search is performed by means of a grad-
ually constructed decision tree, but before introducing the overall
procedure of building it, let us define its nodes. There are two types
of nodes in a decision tree: the decision nodes, at which decisions
are made, and the outcome nodes, at which new random information
becomes available. In a DP context like the one we are dealing with,
the decision nodes identify the standard states of the system, while
the outcome nodes represent the post-decision states. A post-decision
state is the state that the system intends to reach when a specific
action is performed, as if there were no exogenous risk factors. For
example, in our problem, the choice of moving action 𝑎 ∈ 𝑚𝑜𝑣𝑒 when
in state 𝑠𝑖|𝑠1𝑖 = 𝑡𝑖, 𝑠2𝑖 = 𝑛, is made with the intention of reaching state
𝑠𝑖+1|𝑠1𝑖+1 = 𝑡𝑖+𝛥𝑡𝖾, 𝑠2𝑖+1 = 𝑎, 𝑒 = (𝑛, 𝑎) ∈  , which is indeed a post-decision
state, more precisely denoted by 𝑠𝑎𝑖 to emphasize the dependence on
chosen action 𝑎. After reaching a post-decision state, information on
the realization of external factors becomes available and determines
the actual transition to another standard state, that we refer to as pre-
decision state. In the previous example, the next pre-decision state may
be equal to the post-decision one, if no collision takes place during
navigation, or it can result in 𝑠𝑖+1 ≠ 𝑠𝑎𝑖 when a failure occurs.

From now on, in our MCTS, the transition from a pre-decision state
𝑠𝑖 (decision node) to the next one 𝑠𝑖+1 is thus divided into two steps:
first, an action 𝑎𝑖 is chosen and the algorithm transitions to a post-
decision state 𝑠𝑎𝑖 (outcome node) following the transition equations
defined in (4)–(10), (13), (14), with 𝑤𝑖+1 = 1 and 𝑠𝑎𝑖 replacing 𝑠𝑖+1);
then, after the random realizations of the risk factors, it proceeds
according to the same transitions, for which we use the novel general
notation:

𝑠𝑖+1 = 𝑔𝑎𝑡𝑖+𝛥𝑡(𝑠𝑖, 𝑎𝑖, 𝑤𝑖+1). (23)

The algorithm always follows four main steps iteratively. In fact, af-
ter having identified as the tree root the state at which the robot
needs to choose the best action to perform, the MCTS begins and
repeatedly undergoes the phases of selection, expansion, simulation and
backpropagation (see Fig. 4).

Below a precise and problem-driven description for arbitrary itera-
tion ℎ.

1. (Selection) It aims at selecting the most suitable action to
perform at a pre-decision state 𝑠ℎ𝑖 , in order to keep exploring
the tree. When the number of children for the decision node
identified by 𝑠ℎ𝑖 is null, the first action selected is the one with
the highest deterministic immediate contribution. This initial
choice, although quite myopic, guarantees that the effects of
the apparently most appealing action are explored at any cost.
8 
Then, if the number of children is less than a fixed allowed
offspring limit, the action is chosen among the available ones.
This decision is based on a one-step simulation followed by a
MR, as in:

𝑎ℎ,⋆𝑖 = ar g max
𝑎∈ℎ

𝑠𝑖

𝐶𝑖(𝑠ℎ𝑖 , 𝑎) +MyopicRollout𝑔𝑡𝑖+𝛥𝑡(𝑠ℎ𝑖 , 𝑎, 𝑤ℎ
𝑖+1). (24)

On the other hand, if the offspring limit has already been
reached in earlier iterations, the action is chosen among the
previously visited ones, collected in ̄ℎ

𝑠𝑖
, according to the Upper

Confidence bounding for Trees (UCT) (Kocsis & Szepesvári,
2006):

𝑎ℎ,∗𝑖 = ar g max
𝑎∈̄𝑗

𝑠𝑖

�̂�(𝑠ℎ𝑖 , 𝑎) + 𝜖

√

√

√

√

2 ln𝑁(𝑠ℎ𝑖 )

𝑁(𝑠𝑎,ℎ𝑖 )
. (25)

The exploration coefficient 𝜖 and the number of visits 𝑁(𝑠ℎ𝑖 )
and 𝑁(𝑠𝑎,ℎ𝑖 ) of the decision node identified by 𝑠ℎ𝑖 and of the
outcome node identified by 𝑠𝑎,ℎ𝑖 respectively, define an explo-
ration term voluntarily biased towards post-decision states that
have been visited less frequently. On the contrary, the term
�̂�(𝑠ℎ𝑖 , 𝑎) = 𝐶𝑖(𝑠ℎ𝑖 , 𝑎) +𝑉 𝑎(𝑠𝑎,ℎ𝑖 ), where 𝑉 𝑎(𝑠𝑎,ℎ𝑖 ) indicates the approx-
imate value assigned to post-decision state 𝑠ℎ𝑖 up until iteration
ℎ, steers the choice towards actions so far considered more
promising.

2. (Expansion) Right after the action selection, it comes the ex-
pansion phase, whose procedure differs depending on earlier
explorations. In fact:

• if the selected action has never been tried before, the
outcome node corresponding to the post-decision state is
created. Then, an outcome is uniformly sampled among the
available ones and the corresponding pre-decision state is
created. At this point, the search enters its next phase;

• if the selected action has already been tried, there are two
further distinct situations:

– all outcomes have been visited. In this case, an out-
come simulation is performed, that will bring the
search to a next pre-decision state, from which a new
selection phase will begin;

– not all outcomes have been visited. Therefore, an out-
come is uniformly sampled among the ones not yet
explored, and the corresponding next pre-decision
state is created, leading the search to its next phase.

Note that, while a limit is set for the number of actions to try at
each state, i.e., for the offspring of the corresponding decision
node, all outcomes are potentially explored. The choice is due
to the fact that, in our specific problem, the admissible outcome
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space given a state is at most binary. For this same reason, there
is no negative effect in uniformly sampling the outcomes during
the expansion phase, actually we think it may fasten the initial
exploration.
Nevertheless, after having sampled all the possible realizations
given an action, external risk factors are simulated according to
their real probability distributions.

3. (Simulation) Whenever a new pre-decision state is created dur-
ing expansion, this last phase stops and a simulation begins: a
value estimated through a MR is associated to the state repre-
senting the new leaf node.

4. (Backpropagation) During this last phase of the MCTS, the
newly simulated value associated to the newly created leaf node
is back-propagated towards the parent-node, iteratively until the
root, following the path sampled during the previous phases of
the current iteration, ℎ. In the meanwhile, also the counters of
the number of visits for each node in the path are updated. The
overall procedure is illustrated in Pseudo-Algorithm 2, where
̄ℎ

𝑎 denotes the set of outcomes visited after the play of action
𝑎 up until iteration ℎ, and is similar to the approach proposed
in Powell (2019), but specifically adapted for single temporal
step updates.

Algorithm 2 Backpropagation phase of MCTS
1: procedure BackPropagation(𝑠ℎ𝑖 )
2: 𝑁(𝑠ℎ𝑖 ) ← 𝑁(𝑠ℎ𝑖 ) + 1
3: while 𝑠𝑎,ℎ𝑖−1 is not null do
4: 𝑁(𝑠𝑎,ℎ𝑖−1) ← 𝑁(𝑠𝑎,ℎ𝑖−1) + 1

5: 𝑉 𝑎(𝑠𝑎,ℎ𝑖−1) = 1
∑

𝑤∈̄ℎ
𝑎

P(𝑤)

∑

𝑤∈̄ℎ
𝑎

P(𝑤)𝑉 (𝑔𝑎𝑡𝑖 (𝑠
ℎ
𝑖−1, 𝑎ℎ𝑖−1, 𝑤))

6: reward = 𝐶𝑖−1(𝑠ℎ𝑖−1, 𝑎ℎ𝑖−1, 𝑤ℎ
𝑖 )

7: delta = 𝑉 𝑎,ℎ(𝑠𝑎,ℎ𝑖−1)

8: 𝑉 (𝑠ℎ𝑖−1) ← 𝑉 (𝑠ℎ𝑖−1) +
(delta−𝑉 (𝑠ℎ𝑖−1))

𝑁(𝑠ℎ𝑖−1)+1

9: BackPropagation𝑠ℎ𝑖−1
10: end while
11: end procedure

Once the four phases of the search are repeated for a fixed time of
iterations, (𝐻 = 50 in our experiments), the policy, guiding the choice
of the best action to perform when in state 𝑠𝑖0 , corresponding to the
root node of the just created Monte Carlo Tree, is:
𝜋⋆(𝑠𝑖0 ) = ar g max

𝑎∈𝑠𝑖0

�̂�(𝑠𝑖0 , 𝑎) = ar g max
𝑎∈𝑠𝑖0

𝐶𝑖(𝑠𝑖0 , 𝑎) + 𝑉 𝑎(𝑠𝑎𝑖0 ). (26)

Let us conclude by focusing in detail on a couple of essential hyperpa-
rameters that have been mentioned when explaining the MCTS phases:
the exploration parameter 𝜖 and the offspring limit, henceforth denoted
y 𝜌.

There are two situations that are preferably to be avoided during
 MCTS, and that can be partially dodged with a reasonable tuning of
uch parameters. The first inconvenient situation consists in iteratively
owering the approximate value of a state, up until its exclusion from
urther exploration, although it may lead to a very promising future
tate when the correct action is selected. In fact, during backpropaga-

tion, the value of a state can be repeatedly compromised by the values
of its other, less promising offspring, if numerous. On the contrary, the
algorithm might become interested in visiting states that only appear as
favorable, when it neglects less frequently visited, yet better, actions.

The first scenario is likely to happen when 𝜖 and 𝜌 are set to
elevate values, whilst the second is mainly caused by the lowering
of the former. Thus, it is naturally inferred that the two parameters
shall be antithetically fixed: an excessive exploration factor should be
accompanied by a conservative offspring limit, and viceversa. We opted
for the first alternative and set 𝜖 = 3.5 and 𝜌 = 5 in all our experiments,
9 
Table 1
List of the orders considered for the Small Instance1. Each order is characterized by
the quantity of items required for each object type.

Obj 1 Obj 2 Obj 3 Obj 4
Order 1 1 1 1 0
Order 2 3 0 0 1
Order 3 0 3 0 0
Order 4 2 0 1 1

conscious of the necessity of increasing both of them, and consequently
the number of iterations 𝐻 , when dealing with significantly larger scale
problems.

5. Experimental results

In this section we illustrate the performances of the methods pre-
sented. First of all, we validate the approximate approaches by com-
paring their results on small instances to the ones output by the exact
DP paradigm described in Section 4.1. Then, since the latter cannot be
applied to larger-scale problems, the analysis on larger instances is only
performed for the approximate methods.

In order to understand what we mean by ‘‘large instance’’, it is
mportant to recall the nature of our problem setting, which was
ointed out in Section 3.1. We deal with a limited lookahead to be
ble to assume a static view of the risk factors related to collisions. If,
hile solving a problem instance, these risk factors change to the point

hat the graph  must be updated, we must define and solve a new
roblem instance. Hence, dealing with extremely large instances and
n extended lookahead would be pointless. For this reason, the larger
roblem instances that we will consider may not be large in an absolute
ay, but we will refer to them as such because they are relative to the

mall ones (and to draw a line between what we may tackle by exact
P and what we cannot).

For experimental purposes, for each instance we define 𝐾 orders
and collect them in a set . We then consider a mission complete
when either all orders have been served or the time horizon is reached,

hichever occurs first.
We mainly focus on variations of the following two instances of the

roblem.

1. Small Instance:

• 𝐾 = 4 orders, listed in Table 1,
• total number of items to collect 𝑄 = 14,
• time horizon 𝑇 = 300 seconds,
• 𝑂 = 4 object types,
• 𝐷 = 2 trays,
• | | = 6 graph vertices;

2. Large Instance:

• 𝐾 = 8 orders, listed in Table 2,
• total number of items to collect 𝑄 = 42,
• time horizon 𝑇 = 1000 seconds,
• 𝑂 = 5 object types,
• 𝐷 = 3 trays,
• | | = 8 graph vertices.

All experiments account for a maximum robot capacity of 𝑐 = 4 and
are conducted with fixed deterministic rewards 𝑟pick = 10, 𝑟throw = 12,
used as multiplicative factors in immediate contributions.
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Table 2
List of the orders considered for the Large Instance2. Each order is characterized by
he quantity of items required for each object type.

Obj 1 Obj 2 Obj 3 Obj 4 Obj 5
Order 1 1 2 1 0 0
Order 2 3 0 0 1 2
Order 3 0 3 0 0 2
Order 4 0 0 3 3 0
Order 5 2 0 0 2 1
Order 6 2 0 1 1 1
Order 7 0 1 2 1 2
Order 8 4 0 1 0 0

5.1. Evaluation metrics

We present a set of experiments that aim at evaluating different
characteristics of the results obtained by the different methods. There-
ore, we first compare the approaches for a fixed sequence of orders, in
erms of both times of arrival and associated priority levels. This choice
llows us to reduce variance in the estimates and to focus on the intrin-
ic value of the compared methods. Then, a more general comparison
f the methods regards the average results of a series of experiments
or which the orders’ arrival in the system and the assignment of a
riority level are stochastic, as described in Section 3.2.1. This second

experiment is carried out to assess the robustness of the methods.
Moreover, for all experiments we adopt two different ways for

valuating the results: the first consists of measuring the average time
aken for the robot to fulfill an order. The time is either measured

starting from the instant the order arrives into the system or the instant
the order is assigned to an available tray, hence enters the mission.

espectively, the average waiting time since arrival 𝑉𝑎 and the average
aiting time since entrance 𝑉𝑒 are defined as:

𝑉𝑎 =
1
�̄�

∑

𝑘∈�̄�

𝑇 𝑐
𝑘 − 𝑇 𝑎

𝑘 , (27)

𝑉𝑒 =
1
�̄�

∑

𝑘∈�̄�

𝑇 𝑐
𝑘 − 𝑇 𝑒

𝑘 , (28)

where ̄ ⊆  is the set of orders served before reaching the time
orizon, 𝑇 𝑐

𝑘 is the time instant at which order 𝑘 is completed and 𝑇 𝑎
𝑘

nd 𝑇 𝑒
𝑘 are respectively the arrival time and entrance time of order 𝑘.

f course, the smaller the time taken the more efficient the scheduling.
The other kind of assessment somehow measures the with priority

evels, in the sense that the sequence 𝑆𝑒 of orders assigned to an
vailable tray, sorted by time, should coincide with the sequence 𝑆𝑐 in
hich the orders are fulfilled. In scheduling terms, this is related with

he minimization of work in progress. To this purpose, we introduced
wo evaluation metrics. The first one is based on the maximum shift in
he two sequences, according to
𝑉𝑚𝑎𝑥 = max

𝑘∈̄
|𝑖𝑘 − 𝑗𝑘|, (29)

while the second one defines a value based on the overall late shifting,
as

𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 = 𝐾 −
∑

𝑘∈̄
0.5|𝑗𝑘=𝑖𝑘+1 −

∑

𝑘∈̄
(𝑗𝑘 − 𝑖𝑘 − 1)|𝑗𝑘>𝑖𝑘+1, (30)

where 𝑖𝑘 and 𝑗𝑘 are the positions of order 𝑘 in sequences 𝑆𝑒, 𝑆𝑐 ,
respectively. We wish for the value defined by (29) to be close to zero
and for the one defined by (30) to be close to the total number of
rders 𝐾.

Finally, of course, also algorithms execution times are analyzed and
considered for deciding for the best algorithm overall.

5.2. Experimental setting

The setting considered is the one described in Section 3. Prior the
beginning of the scheduling the first 𝐷 orders defined for a specific
10 
Table 3
Summary of the hyperparameter values used in our experiments.

Method 𝛾 𝜆 𝑅 𝜖 𝜌 𝐻

DP 1 𝐾−𝐷
𝑇

– – – –
MR 0.95 𝐾−𝐷

𝑇
10 – – –

MCTS 0.95 𝐾−𝐷
𝑇

10 3.5 5 50

instance are immediately assigned to the respective 𝐷 trays available,
hence their arrival time and entrance time in the system are set to 0.
urthermore, the positions in the entrance sequence 𝑆𝑒 of such first

orders are all set to 1. Coherently, also the first 𝐷 elements of the
ompletion sequence 𝑆𝑐 are associated to the position 1. For all others
he indexing follows natural enumeration. If not specified otherwise,
he 𝐾−𝐷 remaining orders arrive into the system according to a Poisson
rocess whose rate of arrival is 𝜆 = 𝐾−𝐷

𝑇 .
All parameters values used for our experiments have been clarified

o far, except for the discount factor 𝛾: its value for the exact DP
aradigm equals 1 while is set to 0.95 during application of the MR
and consequently of the MCTS). You can refer to Table 3 for a concise

summary of the hyperparameter values set for all methods.
Please note that experiments are repeated a considerable number

f times,4 hence the presented results always refer to the mean values
obtained over the multiple runs.

5.2.1. Experiments with a fixed sequence of order arrivals
One way we adopt to evaluate the implemented approaches is

o compare them to each other when the sequence of arrival of the
rders and their associated priority levels are fixed. To this purpose, an

homogeneous arrival gap between the last 𝐾 − 𝐷 orders is defined as
equal to 𝑇

6 , while the first 𝐷 orders arrive into the system at time 0, as
in the general stochastic-arrival case described so far. Furthermore, in
order to work with the same priority levels throughout all the repeated
runs regarding this experiment, we generated 𝐾 − 𝐷 random levels of
priority ∈ , to associate to the last 𝐾 −𝐷 orders, after having fixed a
specific seed.

5.3. Results

Having clarified the instances on which experiments are conducted,
he experimental setting, and the values fixed for the parameters, we
re ready to present the results of our research.5

5.3.1. Small instance
As previously mentioned, conducting experiments on small in-

tances of the problem is essential to validate the approximate methods
with respect to the exact DP paradigm, which cannot be applied to
arger scale problems due to its computational expense. Therefore, the
irst results we present refer to Instance 1 and are collected in Tables 4

and 5. The former exhibits the average values of the evaluation metrics
for experiments conducted with fixed sequence of arrival of the orders,
while the latter shows the same average evaluations for experiments
conducted with a stochastic sequence of arrival.

As expected, in both cases, the exact DP paradigm performs better
han the two approximate methods in terms of average time to fulfill an
rder once it has arrived into the system and/or entered the mission.

Instead, it is quite surprising that, despite the longer average order’s
waiting time, serving priority is more respected by approximate meth-
ods. Moreover, by observing the results in Table 5, one can notice that

4 The number of runs repeated to conduct experiments differ for each
method and depend on its execution time. For the MR we repeated at least 30
uns for each experiment, for the DP and MCTS 15.

5 For code and implementation details, please refer to https://github.com/
margheritabattistotti/opt_robot_scheduling_with-lookahead-basedADP.git.

https://github.com/margheritabattistotti/opt_robot_scheduling_with-lookahead-basedADP.git
https://github.com/margheritabattistotti/opt_robot_scheduling_with-lookahead-basedADP.git
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Table 4
Comparison of the performances of our approaches on Instance 1. All runs are executed

ith the same fixed sequence of arrival and priority levels of the orders.
Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

DP 98 95 1.20 3.40 58.37s
MR 153 123 0.80 3.63 0.13s
MCTS 130 122 0.06 3.96 6.11s

Table 5
Comparison of the performances of our approaches on Instance 1. All runs are executed

ith different stochastic sequences of arrival and priority levels of the orders.
Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

DP 78 76 0.33 3.83 39.12s
MR 128 116 0.16 3.91 0.13s
MCTS 142 126 0.05 3.975 5.79s

Table 6
Comparison of the performances of our approaches on Instance 2. All runs are executed

ith the same fixed sequence of arrival and priority levels of the orders.
Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 246 234 0.83 7.55 0.99s
MCTS 250 236 0.6 7.63 38.97s

an higher compliance between the two sequences 𝑆𝑒 and 𝑆𝑐 , of orders
ntering the mission and being completed respectively, may suggest a
mall sacrifice in efficiency.

We can conclude that both approximate approaches present overall
aluable results and can be considered as valid techniques to apply to
ur problem for its resolution. In fact, in the case of a fixed sequence
f arrival, for which we analyze a specific scenario and thus are
ble to make direct comparisons, the approximate methods present,
ith respect to the exact DP, a delay of less than 30 seconds in the
verage serving time of an order once it has entered the mission (𝑉𝑒).
he contained nature of the delay is confirmed by the more robust

analysis on experiments with varying sequences of arrival, although
direct comparisons may be harder to make due to the dependence of
the results on the associated the generated sequences.

As for the resolution speeds, we must present some considerations
rior diving into conclusions. Note that the exact DP’s resolution time
echnically coincides with the time needed to perform the backward
asses. This means that once a computationally expensive backward
ass is performed, having listed all the values associated to all possible
tates of the system, decisions are then taken instantly, even when

failures occur. In our case, such pass must be repeated whenever an
rder in the queue is assigned to a newly available tray; with longer
ime horizons and many more orders to expect, it becomes indeed
ntractable to follow this approach. Nonetheless, for small instances
ith short time horizons like the one presented it proves to be the best
lternative although its highest overall resolution time. On the other

hand, both MR and MCTS execution times refer to the total time taken
for the actual scheduling of a simulated scenario. In fact, the methods
espectively require the application of a rollout and the construction of
 tree whenever a decision must be made; this means that the average
ime to make a decision is negligible in the case of MR and extremely
ontained for the MCTS. Therefore, both approaches represent valuable
aster alternatives to the DP paradigm, especially when it comes to
arger scale problems, as further proved in the next section.

5.3.2. Large instance
Once validated the approximate approaches through comparisons

with the exact DP paradigm, it is now time to analyze their perfor-
mances on a larger scale. The section does not present experimental
results for the DP paradigm since its application to problem Instance
11 
Table 7
Comparison of the performances of our approaches on Instance 2. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders.

Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 308 268 1.20 7.16 0.81s
MCTS 301 260 1.00 7.42 42.22s

2 would cause memory overload,6 as predictable. In fact, Tables 6 and
7 show the results regarding the two sets of experiments performed

ith fixed and stochastic sequence of arrival, referred only to the two
pproximate methods.

The algorithms cause similar average waiting times per order, al-
hough the MCTS presents lower values of 𝑉𝑚𝑎𝑥 and higher values of
𝑜𝑣𝑒𝑟𝑎𝑙 𝑙, suggesting a better compliance in terms of meeting priority
evels, as in the previously analyzed smaller case. Recall that the
CTS performs a search on an iteratively constructed tree, exploring

arious future scenarios, hence leading to a more accurate and varied
ookahead with respect to the MR, whose application guarantees the
xploration of one only among the possible future paths. Moreover,

such forward MR exploration is based on deterministic immediate con-
tributions while real contributions are only employed for the definition
of the final myopic value to associate to a state. On the other hand,
not only during backpropagation the MCTS employs the real prioritized
rewards, but also in the selection phase. Therefore, we may justify the
results with such motivations.

For what concerns execution times, the same considerations made
in the previous section hold for this one as well. In fact, the MR is
efinitely faster than the other method and its decision making process
s almost instant. However, although less evident, the MCTS is also
xtremely time-efficient: for example, if we compute the time taken for
aking a single decision during the simulation of the fixed sequence of

arrival scenario we get approximately 0.22 s, given it takes an average
of 173 actions to complete the mission.

In conclusion, despite the MR presents lower waiting times for the
rders in the fixed-sequence scenario, the more robust analysis per-
ormed on the scenarios with stochastic sequences of arrival proves that
he MCTS is generally slightly preferable. However, the two methods
erform very similarly and can be used interchangeably, unless specific
equirements on execution speeds must be satisfied.

5.4. Further experiments

In the previous sections, we stressed the fact that, given our setting,
we inevitably have to roll the horizon forward and solve the problem
gain when risk factors change significantly. Assuming such an adap-

tation is a relatively frequent task to perform, in we have limited our
main experiments to instances that are only relatively large, because
a longer lookahead would not make too much sense under such an
assumption. However, for the sake of completeness, we believe it is
valuable to assess the behavior of our approaches on longer time hori-
zons, assuming, this time, that risk factors do not change as frequently
and, thus, we can schedule ahead more orders. To this aim, we present
a further experiment, labeled as extra-large instance, characterized as
follows:

Instance 3:

• 𝐾 = 100 orders, sampled at random from the ones in Table 2;
• total number of items to collect 400 ≤ 𝑄 ≤ 600, depending on the

sampling:
• time horizon 𝑇 = 12500 seconds;
• 𝑂 = 5 object types;
• 𝐷 = 3 trays;

6 On a machine equipped with RAM 16 GB.
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Fig. 5. Flowchart illustrating the sequential heuristic procedure. The condition on not having reached the time horizon is implicit: it is not shown in the flowchart but it is
intrinsically verified at every step.
• | | = 8 graph vertices.

All hyperparameter values are set as in the previous experiments,
except for the homogeneous arrival gap, adjusted to 𝑇

𝐾−𝐷+1 , due to
the longer list of orders to be completed. One may observe that we do
not change the parameters 𝑅 of the MR and 𝜖 and 𝜌 of the MCTS, but
we should note that keeping the same structure of the graph does not
affect the local decision-making step of the lookahead approaches. In
order to assess their quality, we compare the results of our approximate
methods to those of a simple sequential heuristic that serves orders one
at a time (𝐷 = 1). The heuristic procedure is illustrated by the flowchart
in Fig. 5. Each time a robot is assigned an order, it is initially guided
towards a box in a boundary location (i.e., the first or the last one).
From there, it starts picking items of the object type associated with the
box if any are demanded, otherwise it moves to the next adjacent box.
When it reaches its capacity, it quits picking and moves towards the
only tray in use to unload all the items collected. After the entire load
has been thrown to the assigned tray, if there are missing items to meet
the order’s demand, the robot returns to the box from where the picking
was interrupted. When the mission is completed, the robot recedes to
the initial box location to repeat the procedure for the immediately
succeeding order. The process is repeated for all orders in the queue or
until a fixed time horizon is reached. The approach may be interpreted
as a simple priority rule to sequence tasks associated with orders, much
like dispatching rules in machine scheduling.

Let us start by analyzing Table 8, which shows the results of our
experiments conducted on the extra-large Instance 3 when having
fixed a sequence for the arrival of the orders and their priority (see
Section 5.2.1). The MCTS presents lower average waiting times for the
orders and better compliance with priority levels when compared to
MR. We can draw similar conclusions when our methods deal with a
stochastic sequence of arrival, for which results are reported in Table 9.
Additionally, we note that their average waiting times with respect to
arrival 𝑉𝑎 and entrance 𝑉𝑒 increased in the latter scenario with respect
to the fixed-sequence one and that the compliance with priority levels
is worse too. This behavior is already visible when analyzing the results
12 
Table 8
Comparison of the performances of our approaches on Instance 3. All runs are executed
with the same fixed sequence of arrival and priority levels of the orders. The gap
between arrivals was set to 𝑇

𝐾−𝐷+1
≈ 127 seconds.

Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 175 169 2.53 93.96 16.89s
MCTS 157 148 1.8 97.1 798.49s
Heuristic 144 115 0 100 0.43s

of our approaches on (large) Instance 2, while it does not hold for
(small) Instance 1. We conclude that our methods tend to struggle on
longer time horizons when dealing with stochastic sequence of arrivals
as more uncertainty is introduced.

Both tables show that the average waiting time with respect to
entrance 𝑉𝑒 is lower when the heuristic is used. This is no surprise,
as the heuristic deals with one order at a time, while our methods try
to serve multiple orders simultaneously. For this reason, we are more
interested in the average waiting time with respect to arrival 𝑉𝑎 to
make comparisons. This value is lower for the heuristic in the fixed-
sequence case, but higher in the case of stochastic sequence of arrival,
and suggests our methods present results similar to a simple heuristic.
However, note that the value of 𝑉𝑒 for the heuristic reflects the average
time needed to serve an order once it is assigned to a tray, that is 115
seconds. In these experiments we set the fixed arrival gap to a value of
approximately 127 seconds: when following the heuristic procedure, the
robot has plenty of time to serve an order before another one arrives.
In such a framework, the system is not stressed and the advantages of
our methods are not shown. We repeated the experiments with a lower
fixed arrival gap of 100 seconds and a higher Poisson rate equal to 0.01.
Tables 10 and 11 confirm our intuition that, under a more stressful
situation, our methods guarantee an average waiting time with respect
to arrival lower than the one presented by the sequential heuristic.
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Table 9
Comparison of the performances of our approaches on Instance 3. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders. The
Poisson rate was set to 𝐾−𝐷

𝑇
≈ 0.008.

Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 458 276 3.6 80.16 18.98s
MCTS 412 262 3.6 86.7 703.26s
Heuristic 494 115 0 100 0.33s

Table 10
Comparison of the performances of our approaches on Instance 3. All runs are executed
with the same fixed sequences of arrival and priority levels of the orders. The gap
etween arrivals was set to 100 seconds.
Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 812 324 4.26 74.3 13.27s
MCTS 661 319 2.8 80.4 798.49s
Heuristic 835 115 0 100 0.48s

Table 11
Comparison of the performances of our approaches on Instance 3. All runs are executed
with different stochastic sequences of arrival and priority levels of the orders. The
Poisson rate was set to 0.01.

Resolution method 𝑉𝑎 𝑉𝑒 𝑉𝑚𝑎𝑥 𝑉𝑜𝑣𝑒𝑟𝑎𝑙 𝑙 Execution time

MR 918 312 4.0 76.55 12.99s
MCTS 913 311 3.0 82.1 612.99s
Heuristic 1174 115 0 100 0.48s

In the end, all these further experiments reinforce the conclusions
rawn in the previous sections about the better performances reached
y the MCTS when compared to MR. Nevertheless, they are both
aluable alternatives to exact methods and heuristics, for their trade-
ff between solution quality and runtime. In fact, concerning runtime,
e recall that both MR and MCTS execution times refer to the total

time taken for the actual scheduling of a simulated scenario. Hence,
on average, the MCTS only took 0.3 s per decision and the MR even
less, given that during their execution they scheduled more than 2000
ctions. However, we should note that for other instances, larger in
erms of graph structure (number of trays and boxes), a MCTS would
equire a higher number of iterations for the construction of a decision
ree with the same lookahead of MR – due to the extended action space
 and this could result in slower decision making.

6. Conclusions

Throughout the text we have discussed the application of the Dy-
namic Programming paradigm, especially of its Approximate counter-
part, on a specific intralogistic robot scheduling problem. We envi-
sioned a scenario where a single agent is tasked with the transportation
of objects from boxes to trays situated in a warehouse. We modeled the
warehouse as a completely connected undirected graph with vertices
corresponding to box locations, where the robot can pick the various
object types, and other vertices corresponding to locations from where
the robot can throw the collected items into the trays. We considered
such trays as assembly spots for specific orders that randomly arrive
into the system, requesting multiple object types in different quantities.
We let the orders being associated with a (randomly assigned) priority
level, essential for the definition of a sorted queue determining the
assignment of an order to an available tray, if any. The limited number
f assembly spots implied the definition of a dynamic mission collecting
he various jobs assigned to the available trays. Finally, we considered
he system to be subjected to static risk factors associated to moving
nd throwing actions and distributed as Bernoulli random variables.
hen, the problem’s main objective was to define a time-efficient and
isk-aware scheduling of tasks for the robot, respecting natural priority
ules.
13 
It is well-known that the exact DP paradigm provides optimal
scheduling of tasks but suffers from curses of dimensionality; on the
other hand, approximate methods output less optimal decisions but
are generally more time-efficient. Guided by this knowledge, we had
he intuition of applying the exact paradigm only to small instances of
he problem described above, and used the results as benchmarks for
he validation of two lookahead policies: Myopic Rollout and Monte

Carlo Tree Search. Indeed, extensive experiments conducted on small
nstances showed a significant difference between the execution times

of the approximate approaches and the ones of the exact paradigm,
without significantly compromising performances. Given the promising
results on small instances, we repeated various experiments on larger
instances for approximate methods only. By evaluating the average
waiting times of the orders and the compliance with priority levels, we
were able to confirm that Myopic Rollout and Monte Carlo Tree Search
are valid techniques for the resolution of dynamic scheduling problems,
like the one at hand.

In conclusion, the approaches we presented have not been previ-
usly explored in the literature, making our work a valuable contri-
ution. As the automation of warehouses and/or fulfillment centers is
urrently a compelling topic for major technological companies, our
indings offer significant insights in this area.

6.1. Further developments

Further developments could focus on even larger instances of the
roblem, on the automated tuning of the hyperparameters here manu-
lly chosen, on the implementation of speed-enhancing techniques, and
n the effects of considering dynamic risks.

In fact, we treated risk factors as static in nature and thus main-
tained them fixed throughout our simulations. However, over longer
time horizons, it is plausible that they may dynamically change, partic-
larly those linked to moving actions involving collisions with humans,
ho are mobile as well. A future topic of research could indeed involve
ore extensive experimentation with dynamic risks and incorporate a

uitable rolling procedure to our scheduling problem.
Regarding the implementation of the algorithms we opted for native

ython language. However, speed-enhancing techniques, as leveraging
ython packages like Numba, could be employed to further optimize
xecution times. Nevertheless, our choice of programming language
oes not compromise the validity of our conclusions: our experiments
nable valuable comparisons under a time perspective despite the
on-optimal runtimes.
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